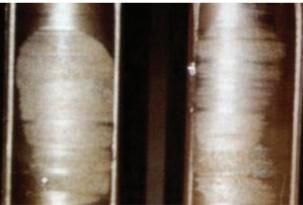

An Introduction to Bearing Failure

www.osborne-engineering.com

- Hairline cracks in the whitemetal surface around the area of applied load
- Surface cracks cannot propagate into the harder backing material so turn sideways along bond line leading to sections of whitemetal detaching

Causes

- · Excessive dynamic loads
- Overheating causing a reduction in fatigue strength
- Misalignment
- · High Levels of vibration
- · Poor localised repairs


Corrective Actions

- · Eliminate causes of dynamic load
- Review bearing alignment
- · Increase load carrying capacity
- Consider bearing materials with higher resistance to dynamic loads

Loss of Oil Film

- · Polished band across some or all of surface
- · No evidence of overload on pivots or housing
- · No excessive wiping of whitemetal

Causes


- · Insufficient lubricant supply to bearing
- Inappropriate lubricant type (viscosity, temperature)
- · Deflect or distortion of journal pads or collars
- · Excessive loads during start up

Corrective Actions

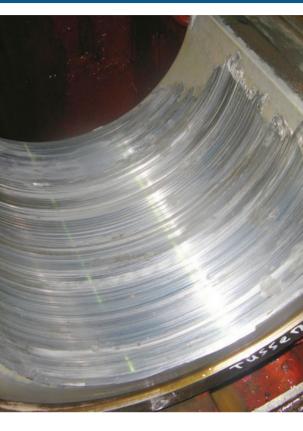
- · Check and modify lubricant supply and type
- Check collars and pads for flatness and squareness
- · Check for possible overloading

Loss of Oil Film

Scoring / Erosion

- Score marks in surface following the direction of motion
- Erosion wear of surface roughening / dulling of the surface

Causes


- Scoring due to contaminant particles larger than the minimum film thickness embedded into the whitemetal layer
- Erosion caused by large quantities of small particles in the lubricant smaller than the oil film thickness typically located near to oil entry point
- · High velocity lubricant flow
- · Atmospheric contamination via seals or breathers
- Could lead to complete failure due to reduced oil films and a reduction in the load carrying capacity

Corrective Actions

- Repair damaged running surfaces
- · Clean lubricant and flush surfaces before restarting
- · Replace and check correct filtration is being used

Scoring / Erosion

Overload / Wiping

- · Circumferential movement (wiping) of whitemetal
- · Heavy scoring
- · Pivots show flattening or indentation
- Re-solidification of whitemetal deposited in oil grooves

Causes

- · Excessive load above design duties
- · Failure of the Hydrodynamic oil film
- · Oil inlet temperature too high
- · Incorrect oil grade used
- · Loading applied into oil grooves
- · Inadequate clearances

Corrective Actions

- Reassess bearing design inputs and operating loads
- · Reduce load on bearings
- · Increase load carrying capacity
- Consider higher load bearing design such as off-set pivot

Overload / Wiping

Misalignment

- Polishing pattern on one side or localized area of babbitt surface
- · Localised severe wear
- · High localised temperature
- Fatigue failure in diagonally opposed areas in top and bottom halves

Causes

- Load concentration on one area of bearing. Due to geometry misalignment
- Axial mismatch between journal and bearing centre lines
- · Misalignment of bearing housing or shaft
- Journal deflection under load

Corrective Actions

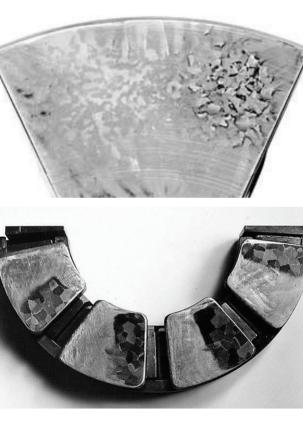
- · Re-align bearings
- Switch to a more misalignment tolerant design such as, tilting pad, equalised thrust or self aligning bearings

Misalignment

Overheating

- · Oil varnish / lacquer build up in hot areas
- Possible local cracking and movement of whitemetal
- · Discolouration of steel

Causes


- · Over speed / excessive load
- · Loss of oil film due to varnish build up
- · Oil inlet temperature too high
- · Insufficient bearing clearance
- · Failure of cooling / insulation mechanism

Corrective Actions

- · Reduce oil inlet temperature
- · Review cooling / insulation mechanism
- · Change to a more heat stable lubricant
- Increase oil flow
- · Increase load carrying capacity

Overheating

Thermal Ratcheting

- Marble type relief pattern on whitemetal surface. Typically more noticeable on trailing (hotter) part of bearing
- · Crack formation between grains

Causes

- Repeated thermal cycling triggering anisotropic thermal expansion of tin crystals within the whitemetal
- Uneven thermal expansion of tin based whitemetal
- · Switching from lead to tin based whitemetal

Corrective Actions

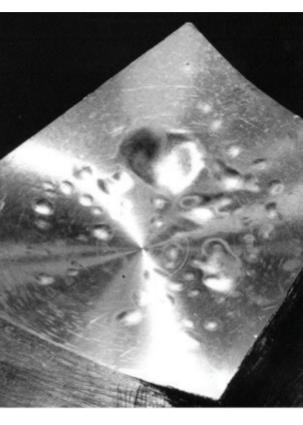
- · Review alloy composition to reduce grain size
- · Where possible minimize thermal cycling

Thermal Ratcheting

Wire Wool Damage

- Very heavy scoring of the whitemetal surface in short time period
- Hard scabs of material embedded into the whitemetal surface

Causes


- Failure initiated by small particles of dirt embedding into the bearing surface
- Shaft material containing chromium or manganese in the region of 2% - 14% are incompatible with whitemetal
- Long tern exposure to water in oil can lead to scab formation (tin oxide)
- Most aluminium bronzes are incompatible
 with whitemetal

Corrective Actions

- · Change journal or collar material to mild steel
- Hard chrome surface in contact with whitemetal

Wire Wool Damage

Hydrogen Blisters

- · Blister under the whitemetal layer
- Can become visible following long periods of storage or operation

Causes

 Hydrogen within the mild steel diffuses out to the bond line then becomes trapped, breaking the mechanical bond

Corrective Actions

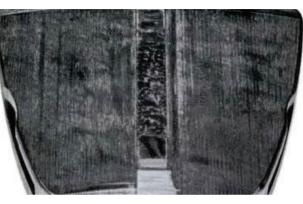
- Degas steel prior to use through thermal or vacuum treatment
- · Repair blistered surfaces
- · Avoid hydrogen sources during manufacture

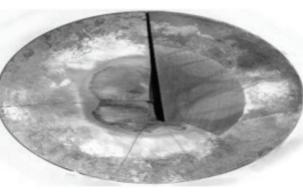
Hydrogen Blisters

Electrical Pitting

- Numerous uniform pits concentrated in discrete areas
- · Frosted appearance in pitted area
- Pitting concentrated to areas with lowest oil film thickness (least insulation)
- Damage will be present on both the bearing and shaft

Causes


- Poor insulation allowing electrostatic arcing between the shaft and bearing
- · Electromagnetic currents from rotating shaft
- Water in oil or film cavitation disrupts insulating
 effect of the oil


Corrective Actions

- · Grounding of shaft currents
- · Insulation of bearings
- Replace lubrication oil and flush housing to remove water content

Electrical Pitting

Pivot Damage / Fretting

- · Wear and erosion of contact surfaces
- Discolouration around contact area
- · Cracks or fractures to highly loaded pivot point
- Flattened pivot area

Causes

- · Fretting caused by vibration of machinery
- · Overload of pads
- · Insufficient pivot contact area to support load

Corrective Actions

- Repair existing pivots
- Reduce the load on the pivots or increase the pivot radius to support higher loads
- Minimise external vibrations

Pivot Damage / Fretting

Typical Parameters

Туре	Typical Peripheral Speeds	Typical Surface Pressure	Stiffness / Dampening
Plain Journal bearing	0-30 m/sec	0.2 – 4.0 MPa	* ****
Pressure Dam bearing	0-40 m/sec	0.2 – 3.5 MPa	** ****
Lemon Bored bearing	25 - 70 m/sec	0.2 – 3.5 MPa	** ****
Offset Bored bearing	20 - 90 m/sec	0.2 – 3.5 MPa	*** ****
Four lobed journal bearing	30 - 90 m/sec	0.1 – 1.5 MPa	*** *
Tilting journal pad bearing	30 - 100 m/sec	0 - 3.0 MPa	**** ****

Plain Journal Bearing

Four Lobe Bearing

Pressure Dam Bearing

Offset Halves Bearing

Lemon Bore Bearing

Tilting Journal Pads

Unit from	Sum	Number	Unit to
in	х	25.4	mm
ft	х	0.3048	metres
1µm (micron)	0	10 ⁻⁶ m	39.37µins
in²	х	6.4516	cm ²
Cm ²	х	100	mm ²
in²	х	6.4516	mm²
tons	х	2240	lbf
tons	х	9.96	kN
kgf	х	9.81	N
lbf	х	4.45	Ν
kN	х	224.8	lbf
kN	х	102	Kgf
kN	х	1000	N
kN	х	100	daN
lb/in ²	х	0.0703	Kg/cm ²
lb/in ²	х	6.895	kN/m ²
MPa	x	1000	KN/m ²
MPa	х	10.2	Kg/cm ²
MPa	х	145	lb/in ²
bar	х	100	kN/m ²
bar	x	14.5	lb/in ²
hp	х	0.745	kW
litres	х	0.2642	U.S.gallons
litres	х	0.22	gallons
ft/sec	х	0.3048	m/sec

Unit Conversions

Osborne Engineering Ltd

Atley way, North Nelson Industrial Estate, Cramlington, Northumberland, England NE23 1WA

T: +44 (0) 1670 737 077 F: +44 (0) 1670 736 127 E: info@oel-group.com

www.osborne-engineering.com

Osborne Engineering LLC

Oilfield Supply Centre, Unit 38, PO BOX 30703, Jebel Ali, Dubai, U.A.E.

T: +971 (4) 883 3310 F: +971 (4) 883 3538 E: info@osborne-engineering.ae

www.osborne-engineering.com

Osborne Engineering Sp. z.o.o.

ul.Rogowska 117a, 54-440 Wroclaw, Poland T: (+48) 71 795 50 00 F: (+48) 71 796 31 77 E: info@osborne-engineering.com.pl

www.osborne-engineering.com.pl

Osborne Bearing Technologies LLC

8525 West Monroe Rd, Houston, TX 77061

T: (+001) 713 904 1234 F: (+001) 713 492 2126 E: info@oel-group.com

www.osborne-engineering.com

www.oel-group.com